[TASK] Generic commit

This commit is contained in:
Jan Philipp Timme 2016-09-08 12:31:19 +02:00
parent aec1d91aa2
commit 1ed796b6a9

View File

@ -287,7 +287,7 @@ Da innerhalb des semantischen Web angestrebt wird, in RDF vorliegende Informatio
\todo{GRAFIK: Verbildlichung durch mehrere mit URI gekennzeichneten Container, die ein paar Tripel enthalten, die aufeinander verweisen.}
\paragraph{RDF-Schema}
\paragraph{RDF-Schema für einfache Ontologien}
Das \enquote{RDF-Schema} (kurz RDFS\footnote{Für eine detailreiche Einführung in RDFS siehe auch \cite{hitzler:semanticweb}[Kapitel 3.4]}) dient zur Spezifikation von Schemawissen durch die Definition von Objektklassen und Prädikaten, welche in hierarchischen Verhältnissen zueinander stehen können\footnote{Mittels \texttt{rdfs:subclassOf} und \texttt{rdfs:subpropertyOf} können hierarchische Verhältnisse zwischen verschiedene Properties beziehungsweise Objektklassen definiert werden.}. Betrachtet man beispielsweise die Daten aus Listing~\ref{lst:sample_rdf_data}, so ist für die Verwendung des Prädikats \texttt{carOnt:drives} in diesem Kontext offensichtlich, dass es nur zusammen mit einem Subjekt der Klasse \texttt{Driver} und einem Objekt der Klasse \texttt{Car} verwendet werden sollte um eine sinnvolle Aussage zu ergeben. Eine solche Regel kann mit Hilfe von RDFS definiert werden, wie Listing~\ref{lst:sample_rdfs_data} zeigt.
\begin{lstlisting}[caption={Definition der Klassen \texttt{Car} und \texttt{Driver} sowie des Prädikats \texttt{drives} in RDFS},label={lst:sample_rdfs_data}]
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@ -304,12 +304,12 @@ carOnt:drives rdfs:range carOnt:Car .
In Listing~\ref{lst:sample_rdfs_data} werden zunächst die beiden Klassen \texttt{carOnt:car} und \texttt{carOnt:Driver} definiert. Im darauf folgenden Absatz wird dann das Merkmal \texttt{carOnt:drives} definiert und über \texttt{rdfs:domain} auf Subjekte der Klasse \texttt{Driver} und mit \texttt{rdfs:range} auf Objekte der Klasse \texttt{Car} eingeschränkt. Trifft man in diesem Kontext nun Tripel mit einem Prädikat \texttt{carOnt:drives} an, so kann man anhand der zugehörigen RDFS-Daten bereits erkennen, womit man es zutun hat.
\paragraph{OWL-Ontologien}
In OWL (Web Ontology Language) formulierte Ontologien werden im semantischen Web sehr häufig zur Strukturierung von RDF-Daten verwendet. Ähnlich wie RDFS definieren OWL-Ontologien ein Vokabular mit logischen Do\-\-nen\-objekt\-klas\-sen und bestimmt für diese Objektklassen Prädikate und Attribute, um bestimmte Sachverhalte eindeutig abbilden zu können. Eine Ontologie für Listing~\ref{lst:sample_rdf_data} würde beispielsweise eine Objektklasse \texttt{Driver} definieren, auf welche das eigens hierfür definierte Prädikat \texttt{hasName} mit einem Attribut vom Typ \texttt{xsd:string} angewandt werden kann. Durch die Möglichkeiten dieser Restriktionen können RDF-Daten aus der Welt einer Ontologie --- ähnlich wie bei einem relationalen Datenbankschema --- eindeutig strukturiert werden.
In OWL (Web Ontology Language) formulierte Ontologien werden im semantischen Web neben RDF-Schemata sehr häufig zur Strukturierung von RDF-Daten verwendet. Ähnlich wie RDFS definieren OWL-Ontologien ein Vokabular mit logischen Do\-\-nen\-objekt\-klas\-sen und bestimmt für diese Objektklassen Prädikate und Attribute, um bestimmte Sachverhalte eindeutig abbilden zu können. Allerdings bietet OWL viel mehr Werkzeuge um feiner granulare Regeln für Objektklassen und Attribute aufzustellen. Eine Ontologie für Listing~\ref{lst:sample_rdf_data} könnte beispielsweise eine Objektklasse \texttt{Driver} definieren, auf welche das eigens hierfür definierte Prädikat \texttt{hasName} mit einem Attribut vom Typ \texttt{xsd:string} angewandt werden kann. Durch die Möglichkeiten dieser Restriktionen können RDF-Daten aus der Welt einer Ontologie --- ähnlich wie bei einem relationalen Datenbankschema --- eindeutig auf inhaltlicher Ebene strukturiert werden.
Natürlich ist es möglich, mehrere verschiedene Ontologien gleichzeitig zu verwenden. Diese Flexibilität ermöglicht beispielsweise, dass eine bereits in RDF abgebildete Person durch beliebige Informationen über Vokabular aus weiteren Ontologien ergänzt werden kann. Natürlich können die Informationen einer in RDF abgebildeten Person auch in verschiedenen, für andere Parteien geläufigen Strukturen verfügbar gemacht werden können. Innerhalb einer Ontologie auf die Objektklassen und Attribute zurückgegriffen werden, die in anderen Ontologien definiert werden. Dies ermöglicht neben Erweiterungen für spezifische Zwecke auch das Übersetzen von Wissen zwischen verschiedenen Ontologien durch die Definition von äquivalenten Objektklassen und Attributen.
\paragraph{Open World Assumption}
Es ist wichtig hervorzuheben, dass für in RDF abgebildete Daten nahezu immer die Annahme gilt, dass diese Daten nicht vollständig sind und somit nicht alle Fakten wirklich bekannt sind. Die meisten Ontologien respektieren diese Annahme und verzichten auf die Definition von expliziten Regeln, die über die konkrete Bedeutung der Abwesenheit von bestimmten Fakten entscheiden würden. (In der Welt der relationalen Datenbanksysteme gibt es eine ähnliche Problematik in Zusammenhang mit der Verwendung des Schlüsselworts \texttt{NULL}.)
Natürlich ist es möglich, mehrere verschiedene Ontologien gleichzeitig zu verwenden. Diese Flexibilität ermöglicht beispielsweise, dass eine bereits in RDF abgebildete Person durch beliebige Informationen mit weiteren Ontologien ergänzt werden kann, oder dass die Informationen einer abgebildeten Person in verschiedenen, für andere Parteien geläufigen Strukturen verfügbar gemacht werden können. Auch kann innerhalb einer Ontologie auf Objektklassen und Attribute zurückgegriffen werden, die in anderen Ontologien definiert werden. Dies ermöglicht neben Erweiterungen für spezifische Zwecke auch das Übersetzen von Wissen zwischen verschiedenen Ontologien.
Sollte es nötig sein, für eigene Terminologie eine Ontologie zu erzeugen, so ist es wichtig hervorzuheben, dass für in RDF abgebildete Fakten nahezu immer die Annahme gilt, dass diese Daten nicht vollständig sind und somit nicht alle realen Fakten auch in RDF erfasst sind. Die meisten existierenden Ontologien respektieren diese Annahme und verzichten auf die Definition von expliziten Regeln, die über die konkrete Bedeutung der Abwesenheit von bestimmten Fakten entscheiden würden. (In der Welt der relationalen Datenbanksysteme gibt es eine ähnliche Problematik in Zusammenhang mit der Verwendung des Schlüsselworts \texttt{NULL}.)
\paragraph{ABox und TBox}
Bei der Modellierung von Wissen mit Hilfe von Beschreibungslogiken, zu denen auch OWL und RDFS zählen, werden die formulierten Aussagen in zwei Gruppen unterteilt\cite{hitzler:semanticweb}[Kapitel 6.1]: Die Assertion Box (ABox) und die Terminology Box (TBox). Während die TBox Aussagen mit terminologischem Schemawissen wie Definitionen von Objektklassen, Prädikaten und ihren Verhältnissen zueinander enthält, beinhaltet die ABox sogenanntes \emph{assertionales Instanzwissen}\cite{hitzler:semanticweb}[Kapitel 6.1], welches aus Aussagen über Klasseninstanzen und deren Merkmale und Beziehungen besteht, in denen das durch die TBox definierte Vokabular genutzt wird.