[TASK] Generic commit
This commit is contained in:
parent
8d66282397
commit
c990872089
@ -6,8 +6,6 @@
|
||||
\usepackage[headsepline,automark]{scrpage2} % Seitenköpfe automatisch
|
||||
\KOMAoptions{headinclude} % Fix
|
||||
\usepackage[german]{babel} % Sprachpaket für Deutsch (Umlaute, Trennung,deutsche Überschriften)
|
||||
% Not needed anymore
|
||||
% \usepackage[•]{•}age{blindtext}
|
||||
\usepackage{graphicx,hyperref} % Graphikeinbindung, Hyperref (alles klickbar, Bookmarks)
|
||||
\usepackage{amssymb} % Math. Symbole aus AmsTeX
|
||||
\usepackage[utf8]{inputenc} % Umlaute
|
||||
@ -154,21 +152,21 @@ Hannover, den \today \hfill Unterschrift
|
||||
|
||||
\chapter{Motivation}\label{cpt:motivation}
|
||||
|
||||
Mit der fortschreitenden Digitalisierung von Alltagsgegenständen und ihrer Verbindung mit dem Internet wächst das sogenannte Internet of Things. Dadurch sind auch immer mehr offene Systeme online verfügbar, die ihre Sensordaten und Zustandsinformationen als RDF\footnote{Resource Description Framework --- Mehr dazu in Kapitel \ref{cpt:basics}}-Datenstrom anbieten. Diese Ereignisdatenströme liefern durchgehend und hochfrequent Ereignisdaten, sodass innerhalb kurzer Zeit sehr große Datenmengen anfallen, die zwecks Extraktion von Informationen und Auslösen von Reaktionen innerhalb kürzester Zeit verarbeitet werden sollen.
|
||||
Mit der fortschreitenden Digitalisierung von Alltagsgegenständen und ihrer Verbindung mit dem Internet wächst das sogenannte Internet of Things. Dadurch sind auch immer mehr offene Systeme online verfügbar, die ihre Sensordaten und Zustandsinformationen als \emph{RDF}\footnote{Resource Description Framework --- Mehr dazu in Kapitel \ref{cpt:basics}}-Datenstrom anbieten. Diese Ereignisdatenströme liefern durchgehend und hochfrequent Ereignisdaten, sodass innerhalb kurzer Zeit sehr große Datenmengen anfallen, die zwecks Extraktion von Informationen und Auslösen von Reaktionen in kürzester Zeit verarbeitet werden sollen.
|
||||
|
||||
Die Ereignisdaten aus diesen Strömen bilden kleine Teile der Realität zumindest nä\-herungs\-wei\-se über die in ihnen enthalten Messdaten und Zustandsinformationen ab, sofern sie nicht bedingt durch technischen Defekt oder Messfehler ungültige Daten enthalten und somit vor der weiteren Verarbeitung herausgefiltert werden sollten. Ein weiteres Problem ist die stark begrenzte Gültigkeit von Ereignisdaten: Oft werden sie schon durch ein neu aufgetretenes Ereignis hinfällig und sind nicht mehr aktuell.
|
||||
|
||||
Ereignisse haben für sich alleine betrachtet neben einer begrenzten Gültigkeit auch nur eine begrenzte Aussagekraft, daher ist es zum höheren Verständnis der dahinter verborgenen Situation notwendig, sie mit den zuvor aufgetretenen Ereignissen in einen Kontext zu setzen. Dadurch können mehrere kleine, hochfrequent auftretende Ereignisse zu einzelnen, niederfrequent auftretenden komplexen Ereignissen aggregiert werden und mittels Mustererkennung höherwertige Informationen aus den Ereignissen extrahiert werden.
|
||||
Ereignisse haben für sich alleine betrachtet neben einer begrenzten Gültigkeit eine begrenzte Aussagekraft, daher ist es zum höheren Verständnis der dahinter verborgenen Situation notwendig, sie mit zuvor aufgetretenen Ereignissen in einen Kontext zu setzen. Dadurch können mehrere kleine, hochfrequent auftretende Ereignisse zu einzelnen, niederfrequent auftretenden komplexen Ereignissen aggregiert werden und mittels Mustererkennung höherwertige Informationen aus den Ereignissen extrahiert werden.
|
||||
|
||||
\todo{GRAFIK: viele kleine hochfrequente vs wenige große niederfrequente Events}
|
||||
|
||||
Die Integration von Domänenwissen\footnote{Hintergrundwissen für den Kontext der Ereignisverarbeitung, verändert sich während der Verarbeitung nur selten} ist ein weiterer Schritt, der die Brücke zwischen den aus komplexen Ereignissen gewonnenen Kenntnissen und bereits bekannten Fakten schlagen soll, um die gewonnenen Kenntnisse in einen eindeutigen Zusammenhang stellen und eine eindeutige Interpretation ermöglichen.
|
||||
Die Integration von \emph{Domänenwissen}\footnote{Hintergrundwissen für den Kontext der Ereignisverarbeitung, verändert sich während der Verarbeitung nur selten} ist ein weiterer Schritt, der die Brücke zwischen den aus komplexen Ereignissen gewonnenen Kenntnissen und bereits bekannten Fakten schlagen soll, um die gewonnenen Kenntnisse in einen eindeutigen Zusammenhang stellen und eine eindeutige Interpretation zu ermöglichen.
|
||||
|
||||
Um unter diesen Bedingungen viele Ereignisdatenströme mit hochfrequenten Ereignissen in nahezu Echtzeit zu verarbeiten ist CEP\footnote{Complex-Event-Processing} das Mittel der Wahl: Mit CEP werden die Ereignisse der verschiedenen Datenströme für begrenzte Zeiträume im Speicher vorgehalten und innerhalb von sogenannten Sliding-Windows betrachtet. Dabei können Ereignismuster erkannt werden und verschiedene Ereignisse aggregiert werden um neue komplexe Ereignisse zu erzeugen.
|
||||
Um unter diesen Bedingungen viele Ereignisdatenströme mit hochfrequenten Ereignissen in nahezu Echtzeit zu verarbeiten ist \emph{CEP}\footnote{Complex-Event-Processing} das Mittel der Wahl: Mit CEP werden die Ereignisse der verschiedenen Datenströme für begrenzte Zeiträume im Speicher vorgehalten und innerhalb von sogenannten \emph{Sliding-Windows}\footnote{Mehr dazu in Kapitel~\ref{cpt:cep_intro}} betrachtet. Dabei können Ereignismuster erkannt werden und verschiedene Ereignisse aggregiert werden um neue komplexe Ereignisse zu erzeugen.
|
||||
|
||||
\todo{GRAFIK: Mustererkennung aus Sliding Window + Generation von neuem Event daraus}
|
||||
|
||||
Ziel dieser Arbeit ist die Einführung in die Konzepte von CEP und RDF, sowie die Demonstration der praktischen Nutzung der CEP-Engine \enquote{C-SPARQL} zur Verarbeitung von RDF-Datenströmen am Beispiel einer Autoverleihgesellschaft zur Überwachung von Leihfahrzeugen. Auch soll ergründet werden, welche technischen Möglichkeiten existieren, um Reasoning auf RDF-Datenströmen zu betreiben --- eine Technik, die Erkenntnisse aus den Ereignisströmen durch Anstellung von Schlussfolgerungen auf den Daten der Datenströme extrahiert.
|
||||
Ziel dieser Arbeit ist die Einführung in die Konzepte von CEP und RDF, sowie die Demonstration der praktischen Nutzung der CEP-Engine \enquote{C-SPARQL} zur Verarbeitung von RDF-Datenströmen am Beispiel einer Autoverleihgesellschaft zur Überwachung von Leihfahrzeugen. Auch soll ergründet werden, welche technischen Möglichkeiten existieren, um \emph{Reasoning} auf RDF-Datenströmen zu betreiben --- eine Technik, die Erkenntnisse aus den Ereignisströmen durch Anstellung von Schlussfolgerungen auf den Daten der Datenströme extrahiert.
|
||||
Diesbezüglich soll ergründet werden, welche CEP-Engines Reasoning bereits implementieren und wie weit ihre technischen Möglichkeiten reichen --- eine große Herausforderung, da die mit einzubeziehenden Ereignisdaten sich kontinuierlich verändern.
|
||||
|
||||
|
||||
@ -361,7 +359,7 @@ Da Ontologien auch genutzt werden können, um Wissen aus den Strukturen einer On
|
||||
Diesen Vorteil erkauft man sich durch einen nicht unerheblichen Einsatz von Rechenleistung, da im Prozess des Reasoning eine Menge von zusätzlichen Daten entsteht, für die zusätzlich zu den bereits vorhandenen Daten die Regeln aller genutzten Ontologien berücksichtigt werden müssen. Behandelt man lediglich statische Daten, die sich kaum bis garnicht ändern, so ist der nötige Aufwand für Reasoning übersichtlich und liegt auch für große Mengen von Daten und Ontologien in einem akzeptablem Rahmen. Ändern sich jedoch häufig Daten, so muss für das Subset der sich geänderten Daten der Reasoning-Prozess erneut durchgeführt werden um eine vollständig aktuelle Datenbasis zu erhalten.
|
||||
|
||||
|
||||
\section{Einführung in Complex Event Processing}
|
||||
\section{Einführung in Complex Event Processing}\label{cpt:cep_intro}
|
||||
|
||||
\todo{Direkt mit RDF-Datenströmen anfangen, nächste Section mit dieser zusammenführen!}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user