[TASK] Generic commit.

This commit is contained in:
Jan Philipp Timme 2016-10-12 14:19:37 +02:00
parent d43d6bfcb6
commit d96d082736
1 changed files with 1 additions and 1 deletions

View File

@ -341,7 +341,7 @@ Durch den Einsatz von Terminologiewissen in Form von OWL-Ontologien oder RDF-Sch
In diesem Prozess werden aus den in RDF vorliegenden Fakten (Assertion Box) und den in den verwendeten Ontologien definierten Objektklassen, Regeln und Zusammenhängen (Terminology Box) neues Wissen abgeleitet \cite{hitzler:semanticweb} und die lokale Datenbasis damit angereichert. So können beispielsweise implizite Klassentypen errechnet werden: \enquote{Ein PKW ist auch ein Fahrzeug, da PKW eine Unterklasse der Klasse Fahrzeug ist.}. Analog hierzu ist es auch möglich, übergeordnete Beziehungen aus vorhandenen Beziehungen abzuleiten: \enquote{Max fährt sein Auto. Da man zum Fahren eines Autos (meist) in dem Auto sitzen muss, folgt daraus: Max sitzt in seinem Auto.}.
Enthält eine Ontologie strukturelle Informationen über Fahrer, PKW und Attribute bezüglich technischer Daten über PKW-Modelle, so ist es beispielsweise möglich auf Basis der Fakten aus Listing~\ref{lst:sample_rdf_data} zusätzliche Attribute der Fahrer wie \enquote{isDrivingCarModel} oder der PKW wie \enquote{hasEmergencyContactNumber} zu errechnen. Dieses funktioniert natürlich nur, falls in den Fakten bekannt ist, dass ein Fahrer ein Fahrzeug fährt und somit zu diesem Fahrzeug verbunden ist. Limitiert werden die Möglichkeiten des Reasoning ebenfalls durch die \emph{Open World Assumption} (OWA), also die Annahme einer offenen Welt, über die nur \emph{unvollständiges Wissen} vorliegt. Deshalb sollten für Reasoning nur explizit bekannte Fakten genutzt werden: Nur weil in Listing~\ref{lst:sample_rdf_data} keine Informationen über weitere PKW oder Fahrer vorhanden sind heißt das nicht, dass diese nicht existieren oder Einfluss auf die bekannten Fakten haben könnten. Weiterführende Beispiele zu den Möglichkeiten von OWL Reasoning finden sich unter \cite{man:owl}.
Enthält eine Ontologie strukturelle Informationen über Fahrer, PKW und Attribute bezüglich technischer Daten über PKW-Modelle, so ist es beispielsweise möglich auf Basis der Fakten aus Listing~\ref{lst:sample_rdf_data} zusätzliche Attribute der Fahrer wie \enquote{isDrivingCarModel} oder der PKW wie \enquote{hasEmergencyContactNumber} zu errechnen. Dieses funktioniert natürlich nur, falls in den Fakten bekannt ist, dass ein Fahrer ein Fahrzeug fährt und somit eine Verbindung zwischen dem Fahrer und dem Fahrzeug existiert. Limitiert werden die Möglichkeiten des Reasoning ebenfalls durch die \emph{Open World Assumption}. Daher sollten für Reasoning nur explizit bekannte Fakten genutzt werden: Nur weil in Listing~\ref{lst:sample_rdf_data} keine Informationen über weitere PKW oder Fahrer vorhanden sind heißt das nicht, dass diese nicht existieren oder Einfluss auf die bekannten Fakten haben könnten. Weiterführende Beispiele zu den Möglichkeiten von OWL Reasoning finden sich unter \cite{man:owl}.
Da Ontologien auch genutzt werden können, um Wissen aus den Strukturen einer Ontologie in die Struktur einer anderen Ontologie zu übersetzen, kann ein Reasoner die daraus resultierende Übersetzung direkt errechnen und der lokalen Datenbasis hinzufügen. Dadurch steht Abfragen, die schon auf die Ziel-Ontologie zugeschnitten sind, ein viel größerer Informationspool zur Verfügung, aus dem das Abfrageergebnis berechnet werden soll.