0
0
mirror of https://github.com/go-gitea/gitea.git synced 2025-01-12 08:15:51 +01:00
gitea/vendor/github.com/glycerine/go-unsnap-stream/rbuf.go
2018-05-19 20:49:46 +08:00

376 lines
10 KiB
Go

package unsnap
// copyright (c) 2014, Jason E. Aten
// license: MIT
// Some text from the Golang standard library doc is adapted and
// reproduced in fragments below to document the expected behaviors
// of the interface functions Read()/Write()/ReadFrom()/WriteTo() that
// are implemented here. Those descriptions (see
// http://golang.org/pkg/io/#Reader for example) are
// copyright 2010 The Go Authors.
import "io"
// FixedSizeRingBuf:
//
// a fixed-size circular ring buffer. Yes, just what is says.
//
// We keep a pair of ping/pong buffers so that we can linearize
// the circular buffer into a contiguous slice if need be.
//
// For efficiency, a FixedSizeRingBuf may be vastly preferred to
// a bytes.Buffer. The ReadWithoutAdvance(), Advance(), and Adopt()
// methods are all non-standard methods written for speed.
//
// For an I/O heavy application, I have replaced bytes.Buffer with
// FixedSizeRingBuf and seen memory consumption go from 8GB to 25MB.
// Yes, that is a 300x reduction in memory footprint. Everything ran
// faster too.
//
// Note that Bytes(), while inescapable at times, is expensive: avoid
// it if possible. Instead it is better to use the FixedSizeRingBuf.Readable
// member to get the number of bytes available. Bytes() is expensive because
// it may copy the back and then the front of a wrapped buffer A[Use]
// into A[1-Use] in order to get a contiguous slice. If possible use ContigLen()
// first to get the size that can be read without copying, Read() that
// amount, and then Read() a second time -- to avoid the copy.
type FixedSizeRingBuf struct {
A [2][]byte // a pair of ping/pong buffers. Only one is active.
Use int // which A buffer is in active use, 0 or 1
N int // MaxViewInBytes, the size of A[0] and A[1] in bytes.
Beg int // start of data in A[Use]
Readable int // number of bytes available to read in A[Use]
OneMade bool // lazily instantiate the [1] buffer. If we never call Bytes(),
// we may never need it. If OneMade is false, the Use must be = 0.
}
func (b *FixedSizeRingBuf) Make2ndBuffer() {
if b.OneMade {
return
}
b.A[1] = make([]byte, b.N, b.N)
b.OneMade = true
}
// get the length of the largest read that we can provide to a contiguous slice
// without an extra linearizing copy of all bytes internally.
func (b *FixedSizeRingBuf) ContigLen() int {
extent := b.Beg + b.Readable
firstContigLen := intMin(extent, b.N) - b.Beg
return firstContigLen
}
func NewFixedSizeRingBuf(maxViewInBytes int) *FixedSizeRingBuf {
n := maxViewInBytes
r := &FixedSizeRingBuf{
Use: 0, // 0 or 1, whichever is actually in use at the moment.
// If we are asked for Bytes() and we wrap, linearize into the other.
N: n,
Beg: 0,
Readable: 0,
OneMade: false,
}
r.A[0] = make([]byte, n, n)
// r.A[1] initialized lazily now.
return r
}
// from the standard library description of Bytes():
// Bytes() returns a slice of the contents of the unread portion of the buffer.
// If the caller changes the contents of the
// returned slice, the contents of the buffer will change provided there
// are no intervening method calls on the Buffer.
//
func (b *FixedSizeRingBuf) Bytes() []byte {
extent := b.Beg + b.Readable
if extent <= b.N {
// we fit contiguously in this buffer without wrapping to the other
return b.A[b.Use][b.Beg:(b.Beg + b.Readable)]
}
// wrap into the other buffer
b.Make2ndBuffer()
src := b.Use
dest := 1 - b.Use
n := copy(b.A[dest], b.A[src][b.Beg:])
n += copy(b.A[dest][n:], b.A[src][0:(extent%b.N)])
b.Use = dest
b.Beg = 0
return b.A[b.Use][:n]
}
// Read():
//
// from bytes.Buffer.Read(): Read reads the next len(p) bytes
// from the buffer or until the buffer is drained. The return
// value n is the number of bytes read. If the buffer has no data
// to return, err is io.EOF (unless len(p) is zero); otherwise it is nil.
//
// from the description of the Reader interface,
// http://golang.org/pkg/io/#Reader
//
/*
Reader is the interface that wraps the basic Read method.
Read reads up to len(p) bytes into p. It returns the number
of bytes read (0 <= n <= len(p)) and any error encountered.
Even if Read returns n < len(p), it may use all of p as scratch
space during the call. If some data is available but not
len(p) bytes, Read conventionally returns what is available
instead of waiting for more.
When Read encounters an error or end-of-file condition after
successfully reading n > 0 bytes, it returns the number of bytes
read. It may return the (non-nil) error from the same call or
return the error (and n == 0) from a subsequent call. An instance
of this general case is that a Reader returning a non-zero number
of bytes at the end of the input stream may return
either err == EOF or err == nil. The next Read should
return 0, EOF regardless.
Callers should always process the n > 0 bytes returned before
considering the error err. Doing so correctly handles I/O errors
that happen after reading some bytes and also both of the
allowed EOF behaviors.
Implementations of Read are discouraged from returning a zero
byte count with a nil error, and callers should treat that
situation as a no-op.
*/
//
func (b *FixedSizeRingBuf) Read(p []byte) (n int, err error) {
return b.ReadAndMaybeAdvance(p, true)
}
// if you want to Read the data and leave it in the buffer, so as
// to peek ahead for example.
func (b *FixedSizeRingBuf) ReadWithoutAdvance(p []byte) (n int, err error) {
return b.ReadAndMaybeAdvance(p, false)
}
func (b *FixedSizeRingBuf) ReadAndMaybeAdvance(p []byte, doAdvance bool) (n int, err error) {
if len(p) == 0 {
return 0, nil
}
if b.Readable == 0 {
return 0, io.EOF
}
extent := b.Beg + b.Readable
if extent <= b.N {
n += copy(p, b.A[b.Use][b.Beg:extent])
} else {
n += copy(p, b.A[b.Use][b.Beg:b.N])
if n < len(p) {
n += copy(p[n:], b.A[b.Use][0:(extent%b.N)])
}
}
if doAdvance {
b.Advance(n)
}
return
}
//
// Write writes len(p) bytes from p to the underlying data stream.
// It returns the number of bytes written from p (0 <= n <= len(p))
// and any error encountered that caused the write to stop early.
// Write must return a non-nil error if it returns n < len(p).
//
func (b *FixedSizeRingBuf) Write(p []byte) (n int, err error) {
for {
if len(p) == 0 {
// nothing (left) to copy in; notice we shorten our
// local copy p (below) as we read from it.
return
}
writeCapacity := b.N - b.Readable
if writeCapacity <= 0 {
// we are all full up already.
return n, io.ErrShortWrite
}
if len(p) > writeCapacity {
err = io.ErrShortWrite
// leave err set and
// keep going, write what we can.
}
writeStart := (b.Beg + b.Readable) % b.N
upperLim := intMin(writeStart+writeCapacity, b.N)
k := copy(b.A[b.Use][writeStart:upperLim], p)
n += k
b.Readable += k
p = p[k:]
// we can fill from b.A[b.Use][0:something] from
// p's remainder, so loop
}
}
// WriteTo and ReadFrom avoid intermediate allocation and copies.
// WriteTo writes data to w until there's no more data to write
// or when an error occurs. The return value n is the number of
// bytes written. Any error encountered during the write is also returned.
func (b *FixedSizeRingBuf) WriteTo(w io.Writer) (n int64, err error) {
if b.Readable == 0 {
return 0, io.EOF
}
extent := b.Beg + b.Readable
firstWriteLen := intMin(extent, b.N) - b.Beg
secondWriteLen := b.Readable - firstWriteLen
if firstWriteLen > 0 {
m, e := w.Write(b.A[b.Use][b.Beg:(b.Beg + firstWriteLen)])
n += int64(m)
b.Advance(m)
if e != nil {
return n, e
}
// all bytes should have been written, by definition of
// Write method in io.Writer
if m != firstWriteLen {
return n, io.ErrShortWrite
}
}
if secondWriteLen > 0 {
m, e := w.Write(b.A[b.Use][0:secondWriteLen])
n += int64(m)
b.Advance(m)
if e != nil {
return n, e
}
// all bytes should have been written, by definition of
// Write method in io.Writer
if m != secondWriteLen {
return n, io.ErrShortWrite
}
}
return n, nil
}
// ReadFrom() reads data from r until EOF or error. The return value n
// is the number of bytes read. Any error except io.EOF encountered
// during the read is also returned.
func (b *FixedSizeRingBuf) ReadFrom(r io.Reader) (n int64, err error) {
for {
writeCapacity := b.N - b.Readable
if writeCapacity <= 0 {
// we are all full
return n, nil
}
writeStart := (b.Beg + b.Readable) % b.N
upperLim := intMin(writeStart+writeCapacity, b.N)
m, e := r.Read(b.A[b.Use][writeStart:upperLim])
n += int64(m)
b.Readable += m
if e == io.EOF {
return n, nil
}
if e != nil {
return n, e
}
}
}
func (b *FixedSizeRingBuf) Reset() {
b.Beg = 0
b.Readable = 0
b.Use = 0
}
// Advance(): non-standard, but better than Next(),
// because we don't have to unwrap our buffer and pay the cpu time
// for the copy that unwrapping may need.
// Useful in conjuction/after ReadWithoutAdvance() above.
func (b *FixedSizeRingBuf) Advance(n int) {
if n <= 0 {
return
}
if n > b.Readable {
n = b.Readable
}
b.Readable -= n
b.Beg = (b.Beg + n) % b.N
}
// Adopt(): non-standard.
//
// For efficiency's sake, (possibly) take ownership of
// already allocated slice offered in me.
//
// If me is large we will adopt it, and we will potentially then
// write to the me buffer.
// If we already have a bigger buffer, copy me into the existing
// buffer instead.
func (b *FixedSizeRingBuf) Adopt(me []byte) {
n := len(me)
if n > b.N {
b.A[0] = me
b.OneMade = false
b.N = n
b.Use = 0
b.Beg = 0
b.Readable = n
} else {
// we already have a larger buffer, reuse it.
copy(b.A[0], me)
b.Use = 0
b.Beg = 0
b.Readable = n
}
}
func intMax(a, b int) int {
if a > b {
return a
} else {
return b
}
}
func intMin(a, b int) int {
if a < b {
return a
} else {
return b
}
}
// Get the (beg, end] indices of the tailing empty buffer of bytes slice that from that is free for writing.
// Note: not guaranteed to be zeroed. At all.
func (b *FixedSizeRingBuf) GetEndmostWritable() (beg int, end int) {
extent := b.Beg + b.Readable
if extent < b.N {
return extent, b.N
}
return extent % b.N, b.Beg
}
// Note: not guaranteed to be zeroed.
func (b *FixedSizeRingBuf) GetEndmostWritableSlice() []byte {
beg, e := b.GetEndmostWritable()
return b.A[b.Use][beg:e]
}