[TASK] Generic commit.
This commit is contained in:
parent
c1ef3be80c
commit
e899bad559
@ -161,17 +161,17 @@ Mit der fortschreitenden Digitalisierung von Alltagsgegenständen und ihrer Verb
|
||||
|
||||
Die Ereignisdaten aus diesen Strömen bilden kleine Teile der Realität zumindest nä\-herungs\-wei\-se über die in ihnen enthaltenen Messdaten und Zustandsinformationen ab, sofern sie nicht bedingt durch technischen Defekt oder Messfehler ungültige Daten ent\-hal\-ten und somit vor der weiteren Verarbeitung herausgefiltert werden sollten. Ein weiteres Problem ist die stark begrenzte Gültigkeit von Ereignisdaten: Oft werden sie schon durch ein neu aufgetretenes Ereignis hinfällig und sind nicht mehr aktuell.
|
||||
|
||||
Ereignisse haben für sich alleine betrachtet neben einer begrenzten Gültigkeit eine begrenzte Aussagekraft, daher ist es zum höheren Verständnis der dahinter verborgenen Situation notwendig, sie mit zuvor aufgetretenen Ereignissen in einen Kontext zu setzen. Dadurch können mehrere kleine, hochfrequent auftretende Ereignisse zu einzelnen, niederfrequent auftretenden komplexen Ereignissen aggregiert werden und mittels Mustererkennung höherwertige Informationen aus den Ereignissen extrahiert werden.
|
||||
Ereignisse haben für sich alleine betrachtet neben einer begrenzten Gültigkeit eine begrenzte Aussagekraft. Daher ist es zum höheren Verständnis der dahinter verborgenen Situation notwendig, sie mit zuvor aufgetretenen Ereignissen in einen Kontext zu setzen. Dadurch können mehrere kleine, hochfrequent auftretende Ereignisse zu einzelnen, niederfrequent auftretenden komplexen Ereignissen aggregiert werden und mittels Mustererkennung höherwertige Informationen aus den Ereignissen extrahiert werden.
|
||||
\begin{comment}
|
||||
In Abbildung~\ref{fig:aggregation_patternmatching} wird die Aggregation von Ereignissen sowie die Mustererkennung exemplarisch dargestellt.
|
||||
\end{comment}
|
||||
|
||||
Die Integration von \emph{Domänenwissen}\footnote{Hintergrundwissen für den Kontext der Ereignisverarbeitung, verändert sich während der Verarbeitung nur selten} ist ein weiterer Schritt, der die Brücke zwischen den aus komplexen Ereignissen gewonnenen Kenntnissen und bereits bekannten Fakten schlagen soll, um die gewonnenen Kenntnisse in einen eindeutigen Zusammenhang stellen und eine eindeutige Interpretation zu ermöglichen.
|
||||
Die Integration von \emph{Domänenwissen}\footnote{Hintergrundwissen für den Kontext der Ereignisverarbeitung, verändert sich während der Verarbeitung nur selten} ist ein weiterer Schritt, der die Brücke zwischen den aus komplexen Ereignissen gewonnenen Kenntnissen und bereits bekannten Fakten schlagen soll, um die gewonnenen Kenntnisse in einen eindeutigen Zusammenhang zu stellen und eine eindeutige Interpretation zu ermöglichen.
|
||||
|
||||
Um unter diesen Bedingungen viele Ereignisdatenströme mit hochfrequenten Ereignissen in nahezu Echtzeit zu verarbeiten ist \emph{CEP}\footnote{Complex-Event-Processing} das Mittel der Wahl: Mit CEP werden die Ereignisse der verschiedenen Datenströme für begrenzte Zeiträume im Speicher vorgehalten und innerhalb von sogenannten \emph{Sliding Windows}\footnote{Mehr dazu in Kapitel~\ref{cpt:cep_intro}} betrachtet. Dabei können Ereignismuster erkannt werden und verschiedene Ereignisse aggregiert werden um neue komplexe Ereignisse zu erzeugen.
|
||||
Um unter diesen Bedingungen viele Ereignisdatenströme mit hochfrequenten Ereignissen in nahezu Echtzeit zu verarbeiten ist \emph{CEP}\footnote{Complex Event Processing} das Mittel der Wahl: Mit CEP werden die Ereignisse der verschiedenen Datenströme für begrenzte Zeiträume im Speicher vorgehalten und innerhalb von sogenannten \emph{Sliding Windows}\footnote{Mehr dazu in Kapitel~\ref{cpt:cep_intro}} betrachtet. Dabei können Ereignismuster erkannt werden und verschiedene Ereignisse aggregiert werden um neue komplexe Ereignisse zu erzeugen.
|
||||
|
||||
Ziel dieser Arbeit ist die Einführung in die Konzepte von CEP und RDF, sowie die Demonstration der praktischen Nutzung der CEP-Engine \enquote{C-SPARQL} zur Verarbeitung von RDF-Datenströmen am Beispiel einer Autoverleihgesellschaft zur Überwachung von Leihfahrzeugen. Auch soll ergründet werden, welche technischen Möglichkeiten existieren, um \emph{Reasoning} auf RDF-Datenströmen zu betreiben --- ein Prozess, durch den eine vorhandene Sammlung von Fakten auf Basis von vorgegebener Terminologie automatisch um daraus ableitbarem Wissen angereichert werden kann.
|
||||
Diesbezüglich soll ergründet werden, welche CEP-Engines Reasoning bereits implementieren und wie weit ihre technischen Möglichkeiten reichen --- eine große Herausforderung, da die mit einzubeziehenden Ereignisdaten sich kontinuierlich verändern.
|
||||
Ziel dieser Arbeit ist die Einführung in die Konzepte von CEP und RDF, sowie die Demonstration der praktischen Nutzung der CEP-Engine \enquote{C-SPARQL} zur Verarbeitung von RDF-Datenströmen am Beispiel einer Autoverleihgesellschaft zur Überwachung von Leihfahrzeugen. Auch soll ergründet werden, welche technischen Möglichkeiten existieren um \emph{Reasoning} auf RDF-Datenströmen zu betreiben --- ein Prozess, durch den eine vorhandene Faktensammlung auf Basis von vorgegebener Terminologie automatisch um daraus abgeleitetem Wissen angereichert werden kann.
|
||||
Diesbezüglich soll ergründet werden, welche CEP-Engines Reasoning bereits implementieren und wie weit ihre technischen Möglichkeiten diesbezüglich reichen. In diesem Kontext stellt Reasoning eine große Herausforderung dar, da die mit einzubeziehenden Ereignisdaten sich kontinuierlich verändern.
|
||||
|
||||
|
||||
\section{Szenario}\label{cpt:scenario}
|
||||
|
Loading…
Reference in New Issue
Block a user