Diese Arbeit beschäftigt sich mit \enquote{Complex Event Processing} (CEP), also der Verarbeitung komplexer Ereignisse auf Ereignisdatenströmen in Kombination mit Do\-män\-en\-wis\-sen, und der praktischen Umsetzung dieses Vorhabens auf Basis von RDF-Datenströmen mit der CEP-Engine \enquote{C-SPARQL}.
Nach einem kurzen Einstieg in das Thema CEP soll der Leser einen Einblick in die Features von aktuellen CEP-Engines erhalten und am Beispiel der Engine C-SPARQL\footnote{Mehr Informationen zu C-SPARQL und Download unter \url{http://streamreasoning.org/resources/c-sparql}} die Verarbeitung von Ereignisströmen im RDF-Format in Kombination mit Hintergrundwissen im Detail kennenlernen.
An einem Beispielszenario soll dann der Praxiseinsatz von C-SPARQL erklärt werden, in dem einige der vorgestellten Funktionen Anwendung finden. Im Abschluss wird ein kurzer Ausblick auf die technischen Möglichkeiten des \enquote{Reasoning} gegeben --- eine Technik, die es erlaubt auf den vorhandenen und eingehenden Daten logische Operationen und Schlussfolgerungen durchzuführen um daraus neues Wissen abzuleiten.
Im folgenden Abschnitt wird ein kurzer Einstieg in das Konzept von Complex Event Processing (CEP) gegeben. Eine detailreiche Erläuterung von CEP und die beispielhafte Anwendung der CEP-Engine \enquote{Esper} wird in \cite{hsh:cep} beschrieben.
Wie der Begriff \enquote{Complex Event Processing} schon andeutet, geht es bei CEP um die Verarbeitung von komplexen Ereignissen --- konkret: Die Erkennung und Erfassung von komplexen Ereignissen aus Datenströmen von primitiven Ereignissen. Von Messereignissen aus mit Sensoren ausgestatteten Geräten über Transaktionen im Handel bis hin zu Benutzerinteraktionen auf Webseiten entstehen täglich unzählig viele, primitive Ereignisse, die abhängig von ihrem Kontext für einen bestimmten Zeitraum ein Stück der echten Welt korrekt abbilden.
Die in diesen primitiven Ereignissen enthaltenen Informationen stellen nur einen momentanen Zustand dar; sie haben für sich alleine betrachtet keinen Kontext und somit vorerst bedeutungslos. Betrachtet man beispielsweise ein Ereignis \enquote{Die gemessene Temperatur beträgt 42°C.}, so ist zunächst nicht zu erkennen, was es mit dieser Temperatur auf sich hat. Hier kommt das für die Verarbeitung bereits bekannte \emph{Hintergrundwissen} (auch Domänenwissen) ins Spiel, welches das Ereignis in einen bekannten Kontext stellen kann. Es kann uns beispielsweise verraten, dass die Ereignisquelle ein Temperatursensor ist, der sich in einem PKW auf dem Motorblock befindet. Das Hintergrundwissen kann zu der bekannten Umgebung des Sensors viele weitere Angaben enthalten: Das konkrete Fabrikat des PKW, dessen Höchstgeschwindigkeit und die maximal zulässige Betriebstemperatur des Motors. Dieses Wissen ermöglicht schon eine genaue Einordnung der Informationen des Ereignisses; allerdings werden doch noch weitere Informationen benötigt, um ein eindeutiges Bild der Gesamtsituation zu erhalten. Kombiniert man das Temperaturereignis mit den Meldungen des im PKW installierten Geschwindigkeitssensors, so ergibt sich die Möglichkeit herauszufinden, ob für den aktuellen Betriebszustand des PKW die gemessene Motortemperatur.
Ein weiterer, wichtiger Faktor ist der Zeitraum in dem bestimmte Ereignisse auftreten. Um dies näher zu erläutern, betrachten wir den gegebenen Ereignisstrom aus Listing~\ref{lst:sample_eventstream}.
Auf den ersten Blick ist ersichtlich, dass die Messwerte einen sehr starken Temperaturanstieg abbilden, jedoch fehlt eine Angabe darüber, wie viel Zeit zwischen diesen Ereignissen vergangen ist. Dadurch ist die Interpretation dieser Ereignisse nicht mehr eindeutig möglich: Liegen zwischen den Messereignissen beispielsweise etwa 30-60 Minuten, so könnte es sich um einen normalen Betrieb bei hoher Geschwindigkeit handeln. Sollten jedoch nur wenige Minuten zwischen den Messereignissen vergangen sein, so lassen die Messwerte auf einen Defekt schließen und ein Motorschaden wäre eine mögliche Folge. Die Zeitachse darf somit bei der Ereignisverarbeitung nicht vernachlässigt werden.
Ein weiterer Kernaspekt von CEP ist die Mustererkennung in Ereignissen. Aus bestimmten primitiven Ereignissen, die in einer bestimmten Abfolge auftreten, soll ein konkreter Sachverhalt abgeleitet werden. Treten bei einem PKW beispielsweise in kurzer Zeit nacheinander die Ereignisse \enquote{Motor abgeschaltet}, \enquote{Fahrzeug verriegelt} und \enquote{PKW beschleunigt} auf, so könnte der Fall eingetreten sein, dass ein gerade abgestelltes Fahrzeug losgerollt ist und es sollte unverzüglich eine Reaktion darauf gestartet werden.
Insgesamt liegt die Herausforderung von CEP darin, in kürzester Zeit große Datenströme von Ereignissen mit Hintergrundwissen anzureichern, diese zu höherwertigen Ereignissen zu kombinieren und bestimmte Muster zu finden, sowie die Ergebnisse mit möglichst geringer Verzögerung in Echtzeit ausgeben zu können oder Reaktionen einzuleiten.
Das Ressource Description Framework (RDF) wird bereits im semantischen Web zur Erfassung und Verknüpfung von Wissen verwendet. RDF-Daten bestehen aus einer Menge von Tripeln, welche sich aus den drei Komponenten Subjekt, Prädikat und Objekt zusammensetzen. Ein Subjekt wird durch eine eindeutige URI identifiziert; über Prädikate können diesem Subjekt mit Spezifikation im Objekt-Teil des Tripels bestimmte Attribute mit Werten zugesprochen werden oder Verknüpfungen mit anderen Subjekten hergestellt werden. Aufgrund der Flexibilität dieser Struktur ist es möglich, nahezu jede Art von Informationen auf Tripel abzubilden, wie Listing~\ref{lst:sample_rdf_data} an einem Beispiel zeigt.
Da innerhalb des semantischen Web angestrebt wird, in RDF vorliegende Informationen gemeinsam zu nutzen, miteinander zu kombinieren und vernetzen zu können, werden RDF-Tripel meist als Quadrupel gehandhabt, in denen als zusätzliche Information der sogenannte Graph genannt wird, in dem sie enthalten sind. Ein Graph wird durch eine URI identifiziert und dient somit als Namensraum für die Tripel, die er enthält. Dies vereinfacht die gleichzeitige Nutzung von mehreren Datenquellen, da jedes Tripel eindeutig einem Graphen zuzuordnen ist und innerhalb von Abfragen spezifisch Tripel aus verschiedenen Graphen kombiniert werden können.
Zusätzlich werden im semantischen Web in OWL (Web Ontology Language) formulierte Ontologien als \enquote{Strukturgerüst} verwendet. Eine Ontologie definiert ein Vokabular mit logischen Domänenobjektklassen und bestimmt für diese Objektklassen Prädikate und Attribute, um bestimmte Sachverhalte eindeutig abbilden zu können. Eine Ontologie für Listing~\ref{lst:sample_rdf_data} würde beispielsweise eine Objektklasse \enquote{person} definieren, auf welches die eigenen Prädikate \enquote{isGender}, \enquote{hasName} und \enquote{hasSibling} angewandt werden können. Mit eigenen Attributen für das Prädikat \enquote{isGender} und spezifischen Regeln dafür, welche Attribute ein Prädikat wie \enquote{hasSibling} in Frage kommen können, werden Daten aus der Welt einer Ontologie --- ähnlich wie bei einem relationalen Datenbankschema --- eindeutig strukturiert. Hierbei ist jedoch wichtig hervorzuheben, dass für in RDF abgebildete Daten die Annahme gilt, dass diese Daten nicht vollständig sind. Diese Annahme verhindert, dass in Ontologien Regeln über nicht vorhandene Fakten definiert werden, da die Abwesenheit von Fakten keine feste Bedeutung zugeschrieben bekommt.
Weiterhin ist es möglich, beliebig viele verschiedene Ontologien gleichzeitig zu verwenden. Diese Flexibilität ermöglicht beispielsweise, dass eine bereits in RDF abgebildete Person durch beliebige Informationen mit weiteren Ontologien ergänzt werden kann, oder dass die Informationen einer abgebildeten Person in verschiedenen, für andere Parteien geläufigen Strukturen verfügbar gemacht werden können. Auch kann innerhalb einer Ontologie auf Objektklassen und Attribute zurückgegriffen werden, die in anderen Ontologien definiert werden. Dies ermöglicht neben Erweiterungen für spezifische Zwecke auch das Übersetzen von Wissen zwischen verschiedenen Ontologien.
Die Abfrage von RDF-Daten erfolgt über die Sprache SPARQL (\enquote{SPARQL Protocol And RDF Query Language}). Eine detaillierte Beschreibung von SPARQL ist unter \cite{w3c:sparql} nachzulesen.
Im Gegensatz zu Abfragesprachen von relationalen Datenbanksystemen wie SQL ist es mit SPARQL möglich, Daten über verschiedene Datenquellen wie Tripel- oder Quadstores hinweg miteinander zu verknüpfen. Auch ist im Gegensatz zu SQL keine spezielle Anpassung der Abfragen an ein Datenbankschema notwendig; lediglich die Art und Weise, wie die angeforderten Daten miteinander in Verbindung stehen, ist für SPARQL-Abfragen wichtig. Im Folgenden zeigt Listing~\ref{lst:sample_sparql_query} eine Abfrage auf den Daten aus Listing~\ref{lst:sample_rdf_data}.
Durch den Einsatz von Ontologien ergibt sich die Möglichkeit, auf RDF-Daten Ontologie-gestützt Schlussfolgerungen anstellen zu können (\enquote{Reasoning}). In diesem Prozess werden aus den in RDF-Daten vorhandenen Fakten (Terminology Box, kurz: TBox) und den in den verwendeten Ontologien definierten Objektklassen, Regeln und Zusammenhängen (Assertion Box, kurz: ABox) neues Wissen abgeleitet \cite{hsh:integrating} und die lokale Datenbasis damit angereichert. So können beispielsweise implizite Klassentypen errechnet werden (Ein Kind ist eine Person), oder regelbasierte Attribute ermittelt werden: Max fährt ein Fahrzeug + das Fahrzeug ist ein Kran $\Longrightarrow$ Max ist Kranführer.
Enthält eine Ontologie Informationen über verschiedene Verwandtschaftsgrade in Familien, so ist es beispielsweise möglich auf Basis der Daten aus Listing~\ref{lst:sample_rdf_data} zusätzliche Verbindungen wie \enquote{isBrotherOf} und \enquote{isSisterOf} zu errechnen. Limitiert werden diese Möglichkeiten lediglich durch die OWA (Open World Assumption), also die Annahme einer offenen Welt, über die unvollständiges Wissen vorliegt. Deshalb dürfen für Reasoning nur explizit bekannte Fakten genutzt werden: Nur weil in Listing~\ref{lst:sample_rdf_data} keine Informationen über Eltern vorhanden sind, heißt das erst einmal nicht, dass Max und Marie wirklich Waisenkinder sind. Weiterführende Beispiele zu den Möglichkeiten von OWL Reasoning finden sich unter \cite{man:owl}.
Da Ontologien auch genutzt werden können, um Wissen aus den Strukturen einer Ontologie in die Struktur einer anderen Ontologie zu übersetzen, kann ein Reasoner die daraus resultierende Übersetzung direkt errechnen und der lokalen Datenbasis hinzufügen. Dadurch steht Abfragen, die schon auf die Ziel-Ontologie zugeschnitten sind, ein viel größerer Informationspool zur Verfügung, aus dem das Abfrageergebnis berechnet werden soll.
Diesen Vorteil erkauft man sich durch einen nicht unerheblichen Einsatz von Rechenleistung, da im Prozess des Reasoning eine Menge von zusätzlichen Daten entsteht, für die zusätzlich zu den bereits vorhandenen Daten die Regeln aller genutzten Ontologien berücksichtigt werden müssen. Behandelt man lediglich statische Daten, die sich kaum bis garnicht ändern, so ist der nötige Aufwand für Reasoning übersichtlich und liegt auch für große Mengen von Daten und Ontologien in einem akzeptablem Rahmen. Ändern sich jedoch häufig Daten, so muss für das Subset der sich geänderten Daten der Reasoning-Prozess erneut durchgeführt werden um eine aktuelle Datenbasis zu erhalten.
Um Ereignisse aus verschiedenen Quellen gemeinsam zu verarbeiten ist das RDF-Format das Mittel der Wahl. Hierbei werden die Ereignisse gegebenenfalls vorher in das RDF-Format transformiert und als Datenstrom aus RDF-Quadrupeln der CEP-Engine zugeführt. Die Quadrupel führen neben den Informationen aus den Tripeln noch den Zeitstempel mit, zu dem das Ereignis ausgelöst wurde.
Als Abfragesprache für die RDF-Datenströme kommt eine um zusätzliche Funktionalitäten erweiterte Form von SPARQL --- im Folgenden \enquote{CSPARQL} --- zum Einsatz. CSPARQL kann die eingehenden RDF-Datenströme mit sogenannten \enquote{Sliding Windows} erfassen und ermöglicht die Berücksichtigung der Zeitstempel der Ereignisse innerhalb der Abfrage durch die Bereitstellung von zusätzlichen Sprachkonstrukten und Funktionen. Dabei besteht weiterhin die Möglichkeit, lokal in Form von RDF-Daten vorhandenes Domänenwissen in die Abfrage einzubeziehen und mit den Ereignisdaten zu verknüpfen.
Der große Vorteil bei der Ereignisverarbeitung mit SPARQL auf RDF-Daten liegt in der Mächtigkeit dieser Abfragesprache: Innerhalb einer einzigen SPARQL-Abfrage ist es möglich Ereignisse aus verschiedenen Quellen miteinander zu kombinieren, direkt mit Hintergrundwissen zu kombinieren, nach eigenen Kriterien zu filtern, einfache Berechnungen anzustellen und aus dem Ergebnis neue Ereignisse beliebiger Struktur zu erzeugen.
Somit muss der Anwender neben SPARQL keine weitere Programmiersprache lernen oder sich anderweitig mit der Implementierung der Engine auseinandersetzen, sondern kann sich komplett auf die zu analysierenden Ereignisse konzentrieren. Listing~\ref{lst:sample_combine_events_sparql} zeigt einen SPARQL-Query, in dem zwei aufeinanderfolgende Ereignisse mit Angaben zur Momentangeschwindigkeit eines Autos zu einem komplexeren Beschleunigungsereignis kombiniert werden.
Reasoning auf RDF-Datenströmen ist ein zur Zeit noch umforschtes Gebiet, da durch die begrenzte Gültigkeit von Daten aus Datenströmen relevante Zusammenhänge errechnet werden müssen und gleichzeitig möglichst wenig Rechenleistung gezogen werden soll.
Öhm \dots wie sieht dieser Part eigentlich aus? Habe ich wirklich Anforderungen? Immerhin wird es irgendwo Grenzen geben, was für Anforderungen ich stellen kann.
Verarbeitet Ströme im RDF-Format. Kann Hintergrundwissen im RDF-Format einbeziehen. In Java implementiert und entsprechend auch recht einfach in Java-Projekte zu integrieren.
Timestamp-Funktionalität zur Zeit mit einem Bug versehen, aber generell immernoch nutzbar.
Integration von Hintergrundwissen und Abfragen über mehrere Streams kombiniert möglich.
Spezielle Betrachtung der StreamGenerators und wie sie funktionieren, Anmerkungen darüber, dass hier Daten von außen gezogen und ggf. konvertiert werden können.
Mit \enquote{enquote} wird Text in Anführungszeichen gesetzt, aber manchmal ist vielleicht der Einsatz von \texttt{texttt} sinnvoll. Im \textbf{Notfall} kann auch \textbf{textbf} genutzt werden. Dann gibt es noch \textit{textit}, \textsc{textsc}, \textsf{textsf} und \textsl{textsl}.