Mit der fortschreitenden Digitalisierung von Alltagsgegenständen und ihrer Verbindung mit dem Internet wächst das sogenannte Internet of Things. Dadurch sind auch immer mehr offene Systeme online verfügbar, die ihre Sensordaten und Zustandsinformationen als \emph{RDF}\footnote{Resource Description Framework --- Mehr dazu in Kapitel \ref{cpt:basics}}-Datenstrom anbieten. Diese Ereignisdatenströme liefern durchgehend und hochfrequent Ereignisdaten, sodass innerhalb kurzer Zeit sehr große Datenmengen anfallen, die zwecks Extraktion von Informationen und Auslösen von Reaktionen in kürzester Zeit verarbeitet werden sollen.
Die Ereignisdaten aus diesen Strömen bilden kleine Teile der Realität zumindest nä\-herungs\-wei\-se über die in ihnen enthalten Messdaten und Zustandsinformationen ab, sofern sie nicht bedingt durch technischen Defekt oder Messfehler ungültige Daten enthalten und somit vor der weiteren Verarbeitung herausgefiltert werden sollten. Ein weiteres Problem ist die stark begrenzte Gültigkeit von Ereignisdaten: Oft werden sie schon durch ein neu aufgetretenes Ereignis hinfällig und sind nicht mehr aktuell.
Ereignisse haben für sich alleine betrachtet neben einer begrenzten Gültigkeit eine begrenzte Aussagekraft, daher ist es zum höheren Verständnis der dahinter verborgenen Situation notwendig, sie mit zuvor aufgetretenen Ereignissen in einen Kontext zu setzen. Dadurch können mehrere kleine, hochfrequent auftretende Ereignisse zu einzelnen, niederfrequent auftretenden komplexen Ereignissen aggregiert werden und mittels Mustererkennung höherwertige Informationen aus den Ereignissen extrahiert werden. In Abbildung~\ref{fig:aggregation_patternmatching} wird die Aggregation von Ereignissen sowie die Mustererkennung exemplarisch dargestellt.
Die Integration von \emph{Domänenwissen}\footnote{Hintergrundwissen für den Kontext der Ereignisverarbeitung, verändert sich während der Verarbeitung nur selten} ist ein weiterer Schritt, der die Brücke zwischen den aus komplexen Ereignissen gewonnenen Kenntnissen und bereits bekannten Fakten schlagen soll, um die gewonnenen Kenntnisse in einen eindeutigen Zusammenhang stellen und eine eindeutige Interpretation zu ermöglichen.
Um unter diesen Bedingungen viele Ereignisdatenströme mit hochfrequenten Ereignissen in nahezu Echtzeit zu verarbeiten ist \emph{CEP}\footnote{Complex-Event-Processing} das Mittel der Wahl: Mit CEP werden die Ereignisse der verschiedenen Datenströme für begrenzte Zeiträume im Speicher vorgehalten und innerhalb von sogenannten \emph{Sliding-Windows}\footnote{Mehr dazu in Kapitel~\ref{cpt:cep_intro}} betrachtet. Dabei können Ereignismuster erkannt werden und verschiedene Ereignisse aggregiert werden um neue komplexe Ereignisse zu erzeugen.
Ziel dieser Arbeit ist die Einführung in die Konzepte von CEP und RDF, sowie die Demonstration der praktischen Nutzung der CEP-Engine \enquote{C-SPARQL} zur Verarbeitung von RDF-Datenströmen am Beispiel einer Autoverleihgesellschaft zur Überwachung von Leihfahrzeugen. Auch soll ergründet werden, welche technischen Möglichkeiten existieren, um \emph{Reasoning} auf RDF-Datenströmen zu betreiben --- ein Prozess, durch den eine vorhandene Sammlung von Fakten auf Basis von vorgegebener Terminologie automatisch um daraus ableitbarem Wissen angereichert werden kann.
Diesbezüglich soll ergründet werden, welche CEP-Engines Reasoning bereits implementieren und wie weit ihre technischen Möglichkeiten reichen --- eine große Herausforderung, da die mit einzubeziehenden Ereignisdaten sich kontinuierlich verändern.
Das Beispielszenario, welches für diese Arbeit verwendet wird, ist eine Autoverleihgesellschaft, die ihren Fuhrpark überwachen möchte, um ihren Kunden vergünstigte Tarife für verschleißarmes Fahrverhalten anbieten zu können. Weiterhin soll auf plötzlich auftretende Probleme an den Leihwagen möglichst schnell reagiert werden können um Schäden zu begrenzen, gefährliche Situationen zu vermeiden und bei Bedarf dem Kunden unverzüglich einen Ersatzwagen oder weitere Serviceleistungen anbieten zu können.
\item Unbeabsichtigtes Wegrollen von abgestellten Fahrzeugen
\end{itemize}
Um diese Situationen zu erkennen, sollen zwei RDF-Ereignisdatenströme zur späteren Verarbeitung eingerichtet werden und eine Sammlung von Fakten in lokalem Domänenwissen modelliert werden. Diese werden im Folgenden vorerst nur grob beschrieben.
Besonders wichtige Ereignisse, wie das Aufleuchten der Motorkontrollleuchte oder das Auslösen des Airbags, sollen über diesen Datenstrom separat von den Statusdaten gemeldet werden.
Wird einem Kunden ein PKW zugewiesen oder gibt ein Kunde einen geliehenen PKW wieder zurück, so soll hierfür ein Ereignis in diesen Datenstrom eingespeist werden. Diese Ereignisse sollen immer die eindeutige Kundennummer und die Nummer des geliehenen Fahrzeugs enthalten, um eine eindeutige Zuordnung vornehmen zu können.
Um die Ereignisdaten aus den beiden beschriebenen Datenströmen bei der Verarbeitung in einen eindeutigen Kontext setzen zu können, wird lokal verfügbares Hintergrundwissen benötigt. Es soll die Zuordnung von Kunden zu den von ihnen geliehenen PKW aufbauen, die einzelnen PKW konkreten Automodellen zuordnen und somit eine konkrete Interpretation der von den PKW gemeldeten Daten ermöglichen.
Nachdem in Kapitel~\ref{cpt:motivation} das Vorhaben dieser Arbeit grob beschrieben wurde, folgt nun eine Einführung in die dafür benötigten Grundlagen. Da die später zu verarbeitenden Ereignisdatenströme im RDF-Format vorliegen werden, soll zunächst eine Einführung in das semantische Web zeigen, wie RDF zur Modellierung und Beschreibung von Wissen eingesetzt werden kann, und welche Möglichkeiten dadurch geboten werden. Anschließend sollen die grundlegenden Konzepte von CEP erläutert mit Hinblick auf die Verarbeitung von RDF-Datenströmen erläutert werden.
Das sogenannte \enquote{semantische Web} ist ein großes Anwendungsgebiet für RDF-Daten und deren Verlinkung. In diesem Abschnitt soll erläutert werden, was RDF ist, wofür es eingesetzt wird, und wie man in RDF vorliegende Daten verwenden und weiter verarbeiten kann.
Das Resource Description Framework (RDF) wird im semantischen Web zur Modellierung und Repräsentation von Wissen verwendet. RDF-Daten bestehen aus einer Menge von Tripeln, welche sich aus den drei Komponenten Subjekt, Prädikat und Objekt in genau dieser Abfolge zusammensetzen um eine Aussage zu formen. Jeder dieser drei Bestandteile eines Tripels kann durch einen eindeutigen Uniform Resource Identifier (URI\footnote{Der URI wird in RFC 3986 beschrieben. Anstelle eines URI kann auch ein IRI (Internationalized Resource Identifier) verwendet werden --- die internationalisierte Form des URI nach RFC 3987.}) identifiziert werden. Lediglich in der Position \enquote{Objekt} eines Tripels kommen auch sehr häufig sogenannte \emph{Literale} vor um konkrete Datenwerte beispielsweise in Form von Zeichenketten oder Ganzzahlen zu repräsentieren.
Das in Listing~\ref{lst:sample_rdf_triple} enthaltene Tripel ordnet das Car-Subjekt \texttt{\#23} über das Prädikat \texttt{isCarModel} dem Objekt CarModell \texttt{\#42} zu.
Wie anhand des Beispiels aus Listing~\ref{lst:sample_rdf_triple} erkennbar ist, ist die explizite Notation für Tripel aufgrund der häufigen Nennung von vollständigen URIs wenig platzsparend und für große Datenmengen somit nicht empfehlenswert. Da es neben XML noch andere Repräsentationsformate für RDF-Daten gibt, bietet sich die Nutzung einer Notation an, die eine Nutzung von Prefixen erlaubt. Nach einer einmaligen Definition innerhalb eines Kontextes (zum Beispiel einer Datei) können diese Prefixe dann für den gesamten Kontext verwendet werden und verringern somit erheblich den Bedarf an Speicherplatz.
Listing~\ref{lst:sample_rdf_triple_with_prefix} zeigt die Notation von Tripeln im Turtle\footnote{Siehe auch die Spezifikation der Turtle-Notation nach \cite{w3c:turtle}}-Format unter Verwendung von Prefixen.
Aufgrund der Flexibilität dieser Struktur ist es möglich, nahezu jede Art von Informationen auf Tripel abzubilden, wie Listing~\ref{lst:sample_rdf_data} an einem Beispiel zeigt.
In RDF kann ein Subjekt grundsätzlich eine Instanz von mehreren Objektklassen sein. Um anzugeben, von welcher Objektklasse ein Tripel-Subjekt eine Instanz ist, wird das Prädikat \texttt{rdf:type} verwendet. Synonym dazu kann anstelle von \texttt{rdf:type} auch das Prädikat \texttt{a} verwendet werden, wie Listing~\ref{lst:sample_rdf_a_predicate} zeigt.
\begin{lstlisting}[caption={Das Prädikat \texttt{a} ist synonym zu \texttt{rdf:type}},label={lst:sample_rdf_a_predicate}]
Abhängig von den Objektklassen eines Subjektes können Ontologien nun einschränken, wie eine Objektinstanz mit anderen Objektinstanzen oder Werten verbunden werden darf. So kann beispielsweise definiert werden, dass das Prädikat \texttt{carOnt:drives} als Subjekt nur Instanzen der Klasse \texttt{carOnt:Driver} und als Objekt nur Instanzen der Klasse \texttt{carOnt:Car} zulässt, da die umgekehrte Richtung nicht sinnvoll wäre.
Da innerhalb des semantischen Web angestrebt wird, in RDF vorliegende Informationen gemeinsam zu nutzen und miteinander zu vernetzen zu können, werden RDF-Tripel meist als Quadrupel (oder kurz \enquote{Quad}) gehandhabt, in denen als zusätzliche Information der sogenannte Graph genannt wird, in dem die Tripel enthalten sind. Ein Graph wird durch eine URI identifiziert und dient als Namensraum für die Tripel, die er enthält. Dies vereinfacht die gleichzeitige Nutzung von mehreren Datenquellen, da jedes Tripel eindeutig einem Graphen zugeordnet werden kann und innerhalb von Abfragen spezifisch Tripel aus verschiedenen Graphen selektiert werden können.
\todo{GRAFIK: Verbildlichung durch mehrere mit URI gekennzeichneten Container, die ein paar Tripel enthalten, die aufeinander verweisen.}
Das \enquote{RDF-Schema} (kurz RDFS\footnote{Für eine detailreiche Einführung in RDFS siehe auch \cite{hitzler:semanticweb}[Kapitel 3.4]}) dient zur Spezifikation von Schemawissen durch die Definition von Objektklassen und Prädikaten, welche in hierarchischen Verhältnissen zueinander stehen können\footnote{Mittels \texttt{rdfs:subclassOf} und \texttt{rdfs:subpropertyOf} können hierarchische Verhältnisse zwischen verschiedene Properties beziehungsweise Objektklassen definiert werden.}. Betrachtet man beispielsweise die Daten aus Listing~\ref{lst:sample_rdf_data}, so ist für die Verwendung des Prädikats \texttt{carOnt:drives} in diesem Kontext offensichtlich, dass es nur zusammen mit einem Subjekt der Klasse \texttt{Driver} und einem Objekt der Klasse \texttt{Car} verwendet werden sollte um eine sinnvolle Aussage zu ergeben. Eine solche Regel kann mit Hilfe von RDFS definiert werden, wie Listing~\ref{lst:sample_rdfs_data} zeigt.
\begin{lstlisting}[caption={Definition der Klassen \texttt{Car} und \texttt{Driver} sowie des Prädikats \texttt{drives} in RDFS},label={lst:sample_rdfs_data}]
In Listing~\ref{lst:sample_rdfs_data} werden zunächst die beiden Klassen \texttt{carOnt:car} und \texttt{carOnt:Driver} definiert. Im darauf folgenden Absatz wird dann das Merkmal \texttt{carOnt:drives} definiert und über \texttt{rdfs:domain} auf Subjekte der Klasse \texttt{Driver} und mit \texttt{rdfs:range} auf Objekte der Klasse \texttt{Car} eingeschränkt. Trifft man in diesem Kontext nun Tripel mit einem Prädikat \texttt{carOnt:drives} an, so kann man anhand der zugehörigen RDFS-Daten bereits erkennen, womit man es zutun hat.
In OWL (Web Ontology Language) formulierte Ontologien werden im semantischen Web neben RDF-Schemata sehr häufig zur Strukturierung von RDF-Daten verwendet. Ähnlich wie RDFS definieren OWL-Ontologien ein Vokabular mit logischen Do\-mä\-nen\-objekt\-klas\-sen und bestimmt für diese Objektklassen Prädikate und Attribute, um bestimmte Sachverhalte eindeutig abbilden zu können. Allerdings bietet OWL viel mehr Werkzeuge um feiner granulare Regeln für Objektklassen und Attribute aufzustellen. Eine Ontologie für Listing~\ref{lst:sample_rdf_data} könnte beispielsweise eine Objektklasse \texttt{Driver} definieren, auf welche das eigens hierfür definierte Prädikat \texttt{hasName} mit einem Attribut vom Typ \texttt{xsd:string} angewandt werden kann. Durch die Möglichkeiten dieser Restriktionen können RDF-Daten aus der Welt einer Ontologie --- ähnlich wie bei einem relationalen Datenbankschema --- eindeutig auf inhaltlicher Ebene strukturiert werden.
Bei der Modellierung von Wissen mit Hilfe von Beschreibungslogiken, zu denen auch OWL und RDFS zählen, werden die formulierten Aussagen in zwei Gruppen unterteilt\cite{hitzler:semanticweb}[Kapitel 6.1]: Die Assertion Box (ABox) und die Terminology Box (TBox). Während die TBox Aussagen mit terminologischem Schemawissen wie Definitionen von Objektklassen, Prädikaten und ihren Verhältnissen zueinander enthält, beinhaltet die ABox sogenanntes \emph{assertionales Instanzwissen}\cite{hitzler:semanticweb}[Kapitel 6.1], welches aus Aussagen über konkrete Klasseninstanzen und deren Merkmale und Beziehungen besteht. In diesen Aussagen der ABox wird dabei das in der TBox definierte Vokabular genutzt.
Ein Beispiel für eine TBox ist Listing~\ref{lst:sample_rdfs_data}, in welcher Objektklassen definiert werden, die innerhalb der ABox aus Listing~\ref{lst:sample_rdf_data} verwendet werden, um konkrete Instanzen dieser Objektklassen zu beschreiben.
\todo{GRAFIK: Ein wenig visualisiertes Wissen, welches TBox und ABox-Inhalte getrennt voneinander darstellt. (Eine Ebene mit Klassen und Attributen, eine andere Ebene mit konkreten Klasseninstanzen und deren Merkmalen)}
Natürlich ist es möglich, mehrere verschiedene Ontologien gleichzeitig zu verwenden. Diese Flexibilität ermöglicht beispielsweise, dass eine bereits in RDF abgebildete Person durch beliebige Informationen über Vokabular aus weiteren Ontologien ergänzt werden kann. Natürlich können die Informationen einer in RDF abgebildeten Person auch in verschiedenen, für andere Parteien geläufigen Strukturen verfügbar gemacht werden können. Innerhalb einer Ontologie auf die Objektklassen und Attribute zurückgegriffen werden, die in anderen Ontologien definiert werden. Dies ermöglicht neben Erweiterungen für spezifische Zwecke auch das Übersetzen von Wissen zwischen verschiedenen Ontologien durch die Definition von äquivalenten Objektklassen und Attributen.
Sollte es nötig sein, für eigene Terminologie eine Ontologie zu erzeugen, so ist es wichtig hervorzuheben, dass für in RDF abgebildete Fakten nahezu immer die Annahme gilt, dass diese Daten nicht vollständig sind und somit nicht alle realen Fakten auch in RDF erfasst sind. Die meisten existierenden Ontologien respektieren diese Annahme und verzichten auf die Definition von expliziten Regeln, die über die konkrete Bedeutung der Abwesenheit von bestimmten Fakten entscheiden würden. (In der Welt der relationalen Datenbanksysteme gibt es eine ähnliche Problematik in Zusammenhang mit der Verwendung des Schlüsselworts \texttt{NULL}.)
Durch den Einsatz von Terminologiewissen in Form von OWL-Ontologien oder RDF-Schemata ergibt sich die Möglichkeit, die Fakten aus der ABox automatisch um über die Terminologie abgeleitetes Wissen anzureichern. Diesen Prozess bezeichnet man als \emph{Reasoning}.
In diesem Prozess werden aus den in RDF vorliegenden Fakten (Assertion Box) und den in den verwendeten Ontologien definierten Objektklassen, Regeln und Zusammenhängen (Terminology Box) neues Wissen abgeleitet \cite{hitzler:semanticweb} und die lokale Datenbasis damit angereichert. So können beispielsweise implizite Klassentypen errechnet werden (\enquote{Ein PKW ist auch ein Fahrzeug}), oder regelbasierte Zugehörigkeiten zu Objektklassen ermittelt werden: Die Aussagen \enquote{Der PKW x rollt.} und \enquote{Der PKW x ist verriegelt.} können zu der Folgerung \enquote{Der PKW x ist eine Gefahrenquelle.} führen.
\todo{Andere Beispiele im Kontext statischer Daten?}
Enthält eine Ontologie strukturelle Informationen über Fahrer, PKW und Attribute bezüglich technischer Daten über PKW-Modelle, so ist es beispielsweise möglich auf Basis der Fakten aus Listing~\ref{lst:sample_rdf_data} zusätzliche Attribute der Fahrer wie \enquote{isDrivingCarModel} oder der PKW wie \enquote{hasEmergencyContactNumber} zu errechnen. Dieses funktioniert natürlich nur, falls in den Fakten bekannt ist, dass ein Fahrer ein Fahrzeug fährt und somit zu diesem Fahrzeug verbunden ist. Limitiert werden die Möglichkeiten des Reasoning ebenfalls durch die \emph{Open World Assumption} (OWA), also die Annahme einer offenen Welt, über die nur \emph{unvollständiges Wissen} vorliegt. Deshalb sollten für Reasoning nur explizit bekannte Fakten genutzt werden: Nur weil in Listing~\ref{lst:sample_rdf_data} keine Informationen über weitere PKW oder Fahrer vorhanden sind heißt das nicht, dass diese nicht existieren oder Einfluss auf die bekannten Fakten haben könnten. Weiterführende Beispiele zu den Möglichkeiten von OWL Reasoning finden sich unter \cite{man:owl}.
Da Ontologien auch genutzt werden können, um Wissen aus den Strukturen einer Ontologie in die Struktur einer anderen Ontologie zu übersetzen, kann ein Reasoner die daraus resultierende Übersetzung direkt errechnen und der lokalen Datenbasis hinzufügen. Dadurch steht Abfragen, die schon auf die Ziel-Ontologie zugeschnitten sind, ein viel größerer Informationspool zur Verfügung, aus dem das Abfrageergebnis berechnet werden soll.
Die Vorteile von Reasoning erkauft man sich durch einen nicht unerheblichen Einsatz von Rechenleistung, da im Prozess des Reasoning eine Menge von zusätzlichen Daten entsteht, für die zusätzlich zu den bereits vorhandenen Daten die Regeln aller genutzten Ontologien berücksichtigt werden müssen. Behandelt man lediglich statische Daten, die sich kaum bis garnicht ändern, so ist der nötige Aufwand für Reasoning übersichtlich und liegt auch für große Mengen von Daten und Ontologien in einem akzeptablem Rahmen. Ändern sich jedoch häufig Daten, so muss für das Subset der veränderten Daten der Reasoning-Prozess erneut durchgeführt werden um eine vollständig aktuelle Datenbasis zu erhalten.
Die Abfrage von Wissen aus RDF-Daten erfolgt über die Abfragesprache \emph{SPARQL} (\enquote{SPARQL Protocol And RDF Query Language}), welche in diesem Abschnitt grob erläutert wird. Eine detaillierte Beschreibung von SPARQL ist unter \cite{w3c:sparql} nachzulesen.
Im Gegensatz zu Abfragesprachen von relationalen Datenbanksystemen wie SQL ist es mit SPARQL möglich, Daten über verschiedene Datenquellen wie Tripel- oder Quadstores\footnote{Analog zu relationalen Datenbanksystemen für Relationen ein Speicher für RDF-Tripel beziehungsweise RDF-Quads} hinweg miteinander zu verknüpfen. Auch ist im Gegensatz zu SQL keine spezielle Anpassung der Abfragen an ein Datenbankschema notwendig; lediglich die Art und Weise, wie die angeforderten Daten miteinander in Verbindung stehen, ist für SPARQL-Abfragen wichtig. Kenntnisse über das verwendete Vokabular (RDF-Schema oder OWL-Ontologien) können jedoch bei der Formulierung der Abfragen hilfreich sein. Im Folgenden zeigt Listing~\ref{lst:sample_sparql_query} eine einfache Abfrage auf den Daten aus Listing~\ref{lst:sample_rdf_data}.
\begin{lstlisting}[caption={Abfrage der maximal zulässigen Motordrehzahl des Auto-Subjektes Nr. 0 aus Daten von Listing~\ref{lst:sample_rdf_data}},label={lst:sample_sparql_query}]
Listing~\ref{lst:sample_sparql_query} zeigt, dass SPARQL in der groben Grundstruktur eine Ähnlichkeit zu SQL aufweist; allerdings sind bedingt durch die Struktur der Daten (Relationen bei SQL gegenüber Tripel und Quadrupel bei SPARQL) große Unterschiede in der Gestaltung der Abfragen zu finden. Zunächst werden analog zur Turtle-Notation Prefixe notiert, die innerhalb der Abfrage verwendet werden sollen. In der \texttt{WHERE}-Klausel werden Tripel mit Platzhaltern verwendet, um aus dem vorhandenen Datenbestand die Tripel zu isolieren, die auf das angegebene Muster passen. So wird in diesem Beispiel zunächst ein Tripel gesucht, welches als Subjekt \texttt{car:0} gesetzt hat und das Prädikat \texttt{carOnt:isCarModel} verwendet, welches auf das zu dem Auto zugehörige Automodell-Subjekt zeigt. Ergibt sich ein Treffer, so wird der Objekt-Teil des gefundenen Tripels in den Platzhalter \texttt{?carModel} eingefügt und für die Suche des zweiten Tripels des SPARQL-Queries verwendet.
Für das gefundene \texttt{?carModel} wird nun ein Tripel gesucht, welches für \texttt{?carModel} das Prädikat \texttt{carOnt:maximumMotorRPM} nutzt, um die Angabe der maximalen Drehzahl für dieses Automodell zu definieren. Wird hierfür ebenfalls ein Treffer gelandet, so wird der Platzhalter \texttt{?maxMotorRPM} mit dem dazugehörigen Wert gefüllt und kann dann in der \texttt{SELECT}-Klausel selektiert werden. Für jede Tripelkombination, die auf die in der \texttt{WHERE}-Klausel formulierten Beschreibung passt, ergibt sich nun ein Ergebnis, für welches die in der \texttt{SELECT}-Klausel angegebenen Felder zurückgegeben werden --- in diesem Fall also lediglich ein Ergebnis mit dem Wert \enquote{4300}.
Neben \texttt{SELECT} unterstützt SPARQL auch den Befehl \texttt{CONSTRUCT}. Dieses ermöglicht die direkte Konstruktion von neuen Tripeln aus vorgegebenen Tripeln mit Platzhaltern, welche mit den Ergebnissen der Abfrage gefüllt werden. Listing~\ref{lst:sample_sparql_construct} zeigt die beispielhafte Erzeugung von Tripeln auf Basis der Daten aus Listing~\ref{lst:sample_rdf_data}, welche über das Prädikat \texttt{carOnt:motorRPMTolerance} Auskunft über die Größe des akzeptablen Drehzahlbereiches der Automodelle geben sollen.
\begin{lstlisting}[caption={Konstruktion von neuen Tripeln auf Basis des Wissens aus Listing~\ref{lst:sample_rdf_data}},label={lst:sample_sparql_construct}]
Wie in Listing~\ref{lst:sample_sparql_construct} gezeigt, können einfache Operationen in SPARQL-Abfragen durchgeführt werden, deren Ergebnisse über die \texttt{BIND}-Anweisung in einen vorgegebenen Platzhalter \texttt{?rpmTolerance} eingesetzt werden. In diesem Beispiel wurde die Differenz zwischen der maximalen und der minimalen empfohlenen Motordrehzahl eines Automodells ausgerechnet und ein neues Tripel mit dieser Information generiert.
Von Transaktionen im Handel über Messereignisse von Sensoren bis hin zu Benutzerinteraktionen auf Webseiten entstehen täglich eine Vielzahl von Ereignisdaten, die für einen begrenzten Zeitraum einen Teil der echten Welt abbilden. Um in diesen großen Datenmengen innerhalb kürzester Zeit Muster erkennen zu können und daraus höherwertige Informationen zu aggregieren, ist Complex Event Processing (CEP) ein geeignetes Werkzeug. Wie der Begriff \enquote{Complex Event Processing} schon andeutet, geht es bei CEP um die Verarbeitung von komplexen Ereignissen. Hierbei werden primitive Ereignisse aggregiert oder auf vorgegebene Muster überprüft, um aus den Ergebnissen dann höherwertige Informationen zu gewinnen. Im folgenden Abschnitt wird hierfür ein kurzer Einstieg in das Konzept von CEP gegeben. Für eine detailreiche Erläuterung von CEP und die beispielhafte Anwendung der CEP-Engine \enquote{Esper} sei auf \cite{hsh:cep} verwiesen.
Ein Ereignis trägt neben inhaltlichen Informationen über die Situation in der es ausgelöst wurde auch eine eindeutige ID sowie einen Zeitstempel mit sich. Während der Zeitstempel den Zeitpunkt angibt, zu dem das Ereignis ausgelöst wurde, dient die ID zur eindeutigen Abgrenzung von anderen Ereignisssen. Der Zeitstempel ist notwendig, da es bedingt durch Latenz in der Übertragung und technische Randbedingungen möglich ist, dass die Ereignisdaten zeitverzögert bei der CEP-Engine ankommen.
Da sich Ereignisse immer auf eine konkrete Situation beziehen, enthalten sie nicht mehr Daten als zur Beschreibung der Situation nötig sind. Dafür treten sie häufig mit einer sehr hohen Frequenz auf, da ein Vorgang viele primitive Ereignisse auslösen kann. Betrachtet man beispielsweise einen PKW, der aus dem Stand anfährt und auf 30km/h beschleunigt, so erhält man zusätzlich zu den periodisch gemeldeten Messwerten aus dem Motorraum und einer Hand voll Ereignisse durch Hochschalten des Ganges eine Flut von Informationen darüber, wie die Fußpedale durch den Fahrer bedient wurden.
\todo{Mal sehen, ob das hier unten bleibt oder schon früher genannt wird - jedenfalls können die Ergebnisse der Ereignisverarbeit in neuen, höherwertigeren Ereignissen münden, die dann wieder in die Verarbeitung mit hineingeworfen werden.}
Insgesamt liegt die Herausforderung von CEP darin, in kürzester Zeit große Datenströme von Ereignissen mit Hintergrundwissen anzureichern, diese zu höherwertigen Ereignissen zu kombinieren und bestimmte Muster zu finden, sowie die Ergebnisse mit möglichst geringer Verzögerung in Echtzeit ausgeben zu können oder Reaktionen einzuleiten.
\item Verarbeitet Ströme im RDF-Format. Kann Hintergrundwissen im RDF-Format einbeziehen. In Java implementiert und entsprechend auch recht einfach in Java-Projekte zu integrieren.
\item Timestamp-Funktionalität zur Zeit mit einem Bug versehen, aber generell immernoch nutzbar.
\item Integration von Hintergrundwissen und Abfragen über mehrere Streams kombiniert möglich.
\todo{Warum jetzt eigentlich C-SPARQL? Weil es in Java fährt, auf Jena basiert, Datenströme im RDF-Format direkt unterstützt, Generatoren zum Einspeisen in die Engine nutzt und somit echt komfortabel in der Handhabung ist. Und trotzdem kommen noch akzeptable Ergebnisse mit minimalem Support für RDFS-Reasoning raus. Dadurch ist es für Einsteiger gut geeignet und bietet dennoch schon solide Features durch CSPARQL.}
\todo{Zusammenfassungsüberleitung über das Kapitel}
Nachdem ein grober Einblick in die Welten von RDF und CEP gegeben wurde, soll nun Complex Event Processing verwendet werden, um Ereignisdatenströme im RDF-Format zu verarbeiten.
\section{Ereignisse}
\begin{itemize}
\item Wie sehen RDF-Ereignisse aus, warum sind es Quadrupel anstatt einfacher Tripel?
\end{itemize}
\section{Sprachkonzepte}
\todo{Dieser Bereich wird definitiv mit abstrakter Sprache und dann konkretem C-SPARQL CSPARQL-Query demonstriert.}
\begin{itemize}
\item Sliding Windows zur Betrachtung der Ereignisströme
\item Mustererkennung
\item Aggregation von Ereignissen
\end{itemize}
\subsection{Mustererkennung, Sliding Windows, Aggregation von Ereignissen}
\subsection{Auslösen von Aktionen}
Erzeugen von Ereignissen innerhalb von CSPARQL-Queries. Hinweise auf Möglichkeit der Auslösung von Reaktionen beim Beobachten der Abfrageergebnisse.
\section{Einbindung von Domänenwissen}
Integration von Hintergrundwissen findet live im Query statt ohne extra Klimmzüge, da alles innerhalb der CSPARQL-Queries abzufragen ist.
\section{Reasoning auf RDF-Datenströmen}
\begin{itemize}
\item Bei Stefan Lier mal gucken
\item Reasoning auf RDFS-Level kann die C-SPARQL-Engine definitiv.
\todo{In diesem Kapitel wird die Engine konkret ausgepackt und mit Java-Code benutzt. Es werden Datenstromgeneratoren gezeigt, Queries registriert und vielleicht etwas Reasoning eingeschaltet und dessen Ergebnisse begutachtet.}
In diesem Kapitel wird die C-SPARQL-Engine konkret vorgestellt und verwendet um das Beispielszenario aus Kapitel~\ref{cpt:scenario} umzusetzen. Dafür werden die Anforderungen des Szenarios einzeln betrachtet, die Ereignisdatenströme und der ganze Kram, der da mit dranhängt um dann eine Lösung zu konzipieren und implementieren.
\item Wie steht es um Reasoning? Geht das? Wenn ja, nur RDFS oder auch OWL? \todo{Ist der Unterschied zwischen den Beiden fürs erste sehr wichtig oder führt das zu weit?}
\todo{Spätestens vor dem Druck muss dieses Kapitel raus aus dem Dokument.}
Fähigkeitenliste, die auf C-SPARQL-Engine zutrifft. Eventuell für den Vergleich von CEP-Engines hier mal gucken, was davon relevant und interessant ist.
\begin{itemize}
\item Verarbeitung von mehreren Ereignisströmen
\item Verknüpfung von Ereignissen
\item Konstruktion neuer Ereignisse
\item Sliding/Tumbling Windows
\item Mustererkennung (Abfolge, Präsenz/Absenz von Ereignissen [zeitlicher Abstand])
\item\enquote{COMPUTE EVERY} (Neuberechnung in festen Intervallen)
\item Ausführen von benutzerdefiniertem Code
\item Integration von Hintergrundwissen [aus weiteren Quellen]
\item Aggregationsfunktionen über mehrere Ereignisse (Sum, Avg, ...)
\item Vergleichsoperatoren für Selektionskriterien
\item Bonuspunkte: Reasoning (Logikoperationen und Schlussfolgerungen)
Mit \enquote{enquote} wird Text in Anführungszeichen gesetzt, aber manchmal ist vielleicht der Einsatz von \texttt{texttt} sinnvoll. Im \textbf{Notfall} kann auch \textbf{textbf} genutzt werden. Dann gibt es noch \textit{textit}, \textsc{textsc}, \textsf{textsf} und \textsl{textsl}.